Manuel d'utilisation

SmartFlow-SC1

rgeconcept.fr

StFw-UM

Révision	Commentaire	Date
1.0	Version initiale	10/01/2018
1.1	Version avec nouveau GUI	25/01/2018

1. Instructions de mise en œuvre

Montage du débitmètre

Figure 1 Vue schématique de l'ensemble tubulure

 Monter l'ensemble du débitmètre par la bride de fixation avec le joint plat rond sous la table d'essai à l'aide de la boulonnerie M5 (x4).

Figure 2 Fixation par la bride

SmartFinw

Connexion débitmètre-FCU

- Relier les entrées de pression du FCU au débitmètre par les tuyaux de couleur correspondant au sens de l'écoulement choisi : admission ou échappement.
 - Mode admission :
 - FCU « pressure » **NOIR** (-) au piquage du plenum sur la bride de fixation. Avec le tuyau noir.
 - FCU « flow » rouge (+) au piquage HAUT du débitmètre. Avec le tuyau rouge.
 - FCU « flow » bleu (-) au piquage BAS du débitmètre. Avec le tuyau bleu.
 - Mode échappement :
 - FCU « pressure » **BLANC** (+) au piquage du plenum sur la bride de fixation. Avec le tuyau noir.
 - FCU « flow » rouge (+) au piquage BAS du débitmètre. Avec le tuyau rouge.
 - FCU « flow » bleu (-) au piquage HAUT du débitmètre. Avec le tuyau bleu.

Il s'agit en fait de croiser les entrées soit sur le FCU soit sur le débitmètre. Les connecteurs « push in » permettent facilement de réaliser ce changement de position des tuyaux.

- Relier les entrées de température du FCU au débitmètre par le câble dédié « double RCA/Jack 3.5 »
 - Le jack 3.5 en face arrière du FCU.
 - Le RCA rouge sur l'embase RCA rouge (bas) du débitmètre.
 - Le RCA noir sur l'embase RCA noire (haut) du débitmètre.
- Relier le FCU à l'ordinateur PC par le câble USB. Prise mini B en face arrière du FCU.
- Relier la source d'air avec son tuyau via l'adaptateur 40-63.

Votre soufflerie SmartFlow SC1 est prête à fonctionner et être pilotée par le logiciel SmartFlow

Figure 4 Câblage capteurs T° et USB.

2. Installation du logiciel

SmartFlow

Dans Windows 7 ou 10, le logiciel fourni s'installe en lançant l'exécution du fichier « SmartFlow_xxxProSetup.exe » contenu dans le dossier « SmartFlow_xxxPro » (xxx étant le numéro de version).

L'installation créera automatiquement un dossier C : DataSmartFlow où se trouvent tous les fichiers résultats des tests effectués.

Pilote USB

La liaison avec le FCU se fait par un port COM/USB. Le pilote s'installe en lançant l'exécution du fichier « stlink_winusb_install.bat » dans le fichier « en.stsw-link009l.zip ».

3. Présentation du logiciel de pilotage

L'interface SmartFlow comporte 4 onglets. Le logiciel permet de communiquer avec le FCU, de mesurer, d'afficher les mesures de manière graphique et numérique et gérer les données sous forme de fichiers (sauvegarde/lecture).

Le fenêtre peut se réduire et s'agrandir jusqu'à la pleine taille d'écran. La résolution optimale est 1920x1080.

Tableau de bord

Au lancement de SmartFlow l'écran de l'onglet « Tableau de bord » s'affiche, il comprend 4 zones :

Cadre signalétique d'information :

En haut, pour les messages qui donnent des indications sur l'état de SmartFlow et un voyant « LED » éteint au lancement.

Cadre « Commandes » : à gauche, comportant tous les boutons de commandes inactifs au lancement.

- « ON/OFF » : démarre et arrête SmartFlow.
- « Run Stop » : lance et arrête la mesure de débit.
- « Acquisition Point » : fait l'acquisition des valeurs d'un point de mesure.
- « Tracer Graphe » : termine l'acquisition d'une courbe.
- « Effacer » : permet d'effacer un point de mesure.
- « Notes » : agrandit/réduit la zone de graphique en masquant ou pas la zone commentaires (qui ne seront pas effacés).

Cadre « Commentaires » : en bas, permettant de décrire le test effectué.

- « Date » : automatiquement chargée à la mise ON par « ON/OFF ».
- « Client (nom) » : explicite.
- « Test (nom) » : sera répété sur le graphe comme nom de la courbe.
- « Texte » : texte libre pour l'utilisateur.

La zone d'affichage des mesures :

Tous les paramètres de mesure et du graphe en cours de relevé en fonction de la levée.

SmartFlow

Figure 5 Ecran principal : tableau de bord.

Figure 6 Plein écran 1920x1080

Configuration

L'onglet « Configuration » permet de choisir différentes options qui seront sauvegardées par le logiciel.

Cadre « Configuration » :

- Le choix de la langue : Français/Anglais
- La pression standard de correction : c'est la pression constante à laquelle serait fait le test. Les 2 choix de l'industrie sont 10 ou 28 pouces d'eau (10"H2O / 28" H2O) soit respectivement 25 hPa (mbar) et 70 hPa (mbar). (Rappel : SmartFlow utilise une source d'air flottante et le débit corrigé à la pression standard)
- La température standard de correction : unité et valeur sont sélectionnables. C'est la température à laquelle serait fait le test.
- Le pas de levée : unité et valeur sont sélectionnables.
- Mode d'écoulement : admission ou échappement en accord avec la configuration des tuyaux de piquage de pression. Rappel du mode avec la couleur de fond de l'afficheur de température sur le tableau de bord (Bleu : admission/Rouge : échappement).
- Les unités des grandeurs physiques : métriques ou impériales.
- La fréquence de rafraichissement des données à l'écran.

Cadre « Débitmètre » :

Il est possible d'utiliser le logiciel avec un autre débitmètre à diaphragme dont les dimensions sont paramétrables ici.

- Type de débitmètre : SmartFlow (par défaut) ou « personnalisé ».
- Diamètres : par défaut ou personnalisés.
- Ajustement du débit : option qui permet faire apparaitre un écran dans le « Tableau de bord » spécifique pour ajuster le débit sur un orifice étalon et obtenir un coefficient d'ajustement (Voir paragraphe « <u>Calibration du débitmètre</u> »).

Cadre « Moteur » :

Comprend des caractéristiques de dimensionnement utile pour les calculs indicatifs de la vitesse des gaz à la soupape et du débit théorique de référence.

Ces champs sont sauvegardés. Penser à les renseigner pour chaque session si le système testé change.

- Diamètre du siège
- Diamètre intérieur de la portée
- Diamètre extérieur de la portée
- Diamètre de la tige
- Angle soupape
- Nombre de soupape

Comprend des caractéristiques pour « mémoire » mais non utilisé dans le logiciel (en grisé).

SmartFlow			
Tableau de bord Projet-Graphe Table Configuration			
Configuration	Moteur		
Pression stand, de correction "H2O V 10 "H2O V	Diamètre siège d0		
Température de correction °C V 16.00 ÷	Diamètre soupape int. d1	41.00	
Pas de levée mm v 1.0 ÷	Diamètre soupape ext. d3	45.00	
Mode d'écoulement Adm	Diamètre tige	8.00	
Unité de pression hPa 🔻	Angle soupape (°)	45.00	
Unité de température	Nombre soupape	1	
Unité de débit volumique CFM 💽			
Unité de débit massique kg/h 💌			
Unité de vitesse des gaz m/s 💌	Profil siè d0 Seat pro	ge file	
Unité de dimension mm 💌			
Rafraichissement affichage (x/s) 1 💽			
Débimètre			
Type de débitmètre SmartFlow 💌	d1'		
Diamètre du diaphragme (mm) 28.70	d3 A		
Diamètre du conduit (mm) 57.00	d2►		
Ajustement du débit 1 000	Diamètre alésage	93.00	

Figure 7 Ecran de configuration.

Projet-Graphe

L'onglet « Projet-Graphe » est le gestionnaire de projets/fichiers basé sur des graphes obtenus lors des mesures.

Cadre « Fichiers » :

Comprend les commandes de sauvegarde, lecture et impression des projets. Il est possible d'ouvrir un fichier puis un deuxième afin de comparer deux projets de tests.

Remarque : les données sont aussi sauvegardées sous le type **CSV**. Voir paragraphe « Fichiers CSV ».

Affichage et sélection :

L'affichage des courbes se fait sur la partie graphe et il est possible de sélectionner les courbes avec la boite de sélection sur la partie droite.

En haut se trouve la fenêtre où se trouve le nom du projet ouvert.

Figure 8 Ecran du graphe et de la gestion des fichiers en écriture et lecture.

Table

L'onglet « Table » permet la visualisation des données relatives au dernier graphe tracé.

Le groupe de tables est soit le groupe de tables associées au dernier graphe tracé soit un groupe de tables parmi celles des graphes lus et choisis dans l'onglet « Projet-Graphe ».

Cadre « Fichiers » :

Comprend la commande d'impression des tables projets.

Affichage et sélection :

La sélection de la table à visualiser se fait par la boite de sélection sur la partie droite. Tous les paramètres du test effectué sont présents dans la table y compris les commentaires saisis avant le test.

SmartFlow		-								÷.			
Tableau de bord Projet-Graphe Table Configuration													
Fichiers				Impri	imer								T
L (mm)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Q cor (CFM)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
V (m/s)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Ма	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
dP test (hPa)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
dPflow (hPa)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
T mes (°C)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Q mes (CFM)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
•													
P Baro		0 -	Date					0					
T cor		0	Clier	it				0					
P cor		0	Test					0					
Flux		0	Com	ment				Texte					
D siège d0		0											
Angle soupap	e	0											
D soupape int	t d1	0	-										
			_										

En haut la fenêtre où se trouve le nom du projet ouvert.

Figure 9 Ecran des tables de données.

4. Utilisation du logiciel de pilotage

Démarrage

- Cliquer sur « l'interrupteur » ON/OFF.
- Une liste de ports COM à sélectionner apparait dans la fenêtre « Sel COM » s'il y a plusieurs appareils de ce type disponibles sur le PC.
- Sélectionner le port du FCU (par essais successifs). Le COM choisi s'affiche.
- Le voyant passe au vert et les 4 commandes sont validées sauf « Tracer Graphe ».

Figure 10 Démarrage et connexion au FCU.

Par précaution pour les capteurs il est demandé de démarrer la source d'air avec un minimum de débit.

Il est recommandé de ne pas dépasser 100 hPa de pression de test pour éviter des résultats de débits erronés.

En cas de défaut de capteur de température SmartFlow peut fonctionner avec la valeur de correction standard en place de la température réelle mesurée après clic sur OK.

Figure 11 Message de défaut de capteur de T°.

SmartFlow

Commentaires

La date et l'heure sont automatiquement renseignés dans la partie « Commentaires ». A charge de l'utilisateur de renseigner les champs disponibles pour sa documentation du test.

Mesure en temps réel

- Démarrer la source d'air avec la pièce à mesurer placée sur la soufflerie SC1.
- Démarrer la mesure : Cliquer sur « Run Stop ». Le bouton passe en fond vert. Les mesures sont affichées à la fréquence indiquée dans « Configuration ».
- Arrêter la mesure : Cliquer sur « Run Stop ». Le bouton passe en fond rouge.
- Les pressions s'affichent dans leur fenêtre numérique respective ainsi que sur leur jauge :
 - La pression de test.
 - La différence de pression au débitmètre.
 - La pression atmosphérique.
- La température du test s'affiche sur fond bleu pour le mode admission, rouge en mode échappement.
- Les débits s'affichent dans leur fenêtre respective.

Figure 12 Affichage des paramètres de mesures en temps réel.

Mesure d'une culasse fonction de la levée

- Le pas de la levée sera celui indiqué dans « Configuration ».
- Démarrer la source d'air avec la pièce à mesurer placée sur la soufflerie SC1.
- Démarrer la mesure : Cliquer sur « Run Stop » le bouton passe en fond vert. Les mesures seront affichées à la fréquence indiquée dans « Configuration ».
- Appliquer la 1ere levée sur la culasse.
- Cliquer sur « Acquisition point », le 1^{er} point de la courbe est mesuré et affiché dans la zone graphique en cours « temps réel ».
- La levée est affichée dans sa fenêtre.
- Parcourir l'ensemble des points de levée pour chaque pas.
- Pour terminer l'acquisition de la courbe obtenue cliquer sur « Tracer Graphe ».

Figure 13 Fin d'acquisition : levée max atteinte et graphe temps réel complet.

Remarque :

Le pas de levée peut être non constant, càd qu'il est possible d'appliquer un pas différent à chaque point de mesure.

Exemple :

Pas de levée = 1.5 ; 0.5 ; 1 ; 1... donnant une valeur de levée de : 1.5 ; 2 ; 3 ; 4...

Remarque:

Pour ne pas saturer la mesure à faible levée avec une pression de test en zone rouge (> 100 hPa) on peut recourir à la possibilité ci-dessus (levée minimale sans saturation différente des autres pas de levée).

Autre possibilité :

- Ajouter une fuite sur le tuyau de l'aspirateur (certains en sont pourvus)
- Utiliser un variateur de vitesse afin de diminuer la vitesse du moteur de l'aspirateur et donc la pression de test.
- Automatiquement l'écran « Projet-Graphe » s'affiche avec la courbe sur le graphe et le nom de la courbe dans la boite de sélection.

Figure 14 Graphe de la courbe obtenue et courbe de référence. Ecran avant sauvegarde.

Le nom de la courbe contient les valeurs « somme » et « moyenne » issues d'un calcul intégral. Cela permet de voir en chiffre l'aire de la courbe de débit et la valeur moyenne du débit.

- Le retour à l'onglet « Tableau de bord » permet de recommencer les opérations pour une autre courbe à relever (un autre conduit par exemple).
- Quand la session d'un ensemble de courbes est terminée cliquer sur « Sauver » pour déposer votre projet dans l'espace C : DataSmartFlow. Les fichiers sauvegardés sont ceux du graphe et de la table de données.

Le bouton « Effacer » permet d'effacer les points acquis si nécessaire.

SmartFlow

Note : Il est dessiné une courbe de « référence » du débit idéal théorique basé sur la section de passage et sur la pression de test standard sélectionnée.

Cette section géométrique tronc conique est S = Pi. d2. l. sin A qui donne une bonne approximation de la section. Où d2 est le diamètre moyen de la portée, l la levée et A le demi angle de la soupape comme indiqué sur le schéma de « Configuration ».

Cette section de passage est limitée à $S = Pi. (d0^2 - d^2)/4$. Où d0 est le diamètre du siège et d le diamètre de la tige de soupape.

Mesure d'une pièce sans levée

Le cas d'une pièce mesurée plusieurs fois pour obtenir un ensemble de points peut être intéressant.

Le pas de levée indiqué dans « Configuration » sera alors le pas de l'abscisse de la courbe ou le numéro du point relevé. La valeur « 1 » est toute indiquée.

Dans ce cas pour obtenir les valeurs somme et moyenne correctes il faut commencer la courbe en « effaçant » la 1ere valeur donc en cliquant sur « Effacer ». L'acquisition commence en -1 au lieu de 0 mais la courbe démarre en 0.

Figure 15 Affichage temps réel d'une pièce sans levée.

- Démarrer la source d'air avec la pièce à mesurer placée sur la soufflerie SC1.
- Démarrer la mesure : Cliquer sur « Run Stop » le bouton passe en fond vert. Les mesures seront affichées à la fréquence indiquée dans « Configuration ».
- Cliquer sur « Acquisition point », le 1^{er} point de la courbe est mesuré et affiché dans la zone graphique en cours « temps réel ».
- La levée est le numéro du point mesuré.
- Faire le nombre de relevé de points souhaité.
- Pour terminer l'acquisition de la courbe obtenue cliquer sur « Tracer Graphe ».

📑 Sma	🗈 SmartFlow											
Tableau	Tableau de bord Projet-Graphe Table Configuration											
Fich	iers	Sauver	Ouvrir	Ouvrir 2	Imprimer				◯ Ref			
120.0-					L Etalan 20	 1Etalon 30 S:373 M:62.2 2Etalon 41 S:703 M:117.2 						
			_					+ Etalon 30				
100.0-												
100.0												
80.0-												
60.0-												
40.0-												
20.0-												
0.0-												
0	0	1.0	2.0	3.0) 4.	0 5.	0 6	.0				

Figure 16 Deux mesures d'étalons différents sans levée. Avant sauvegarde.

Lecture/comparaison de projets-graphes

- Dans l'onglet « Projet-Graphe »
- Relecture de projet : cliquer sur « Ouvrir », sélectionner le fichier désiré.
- Comparaison de 2 projets : cliquer sur « Ouvrir », sélectionner le 1^{er} projet puis « Ouvrir 2 » et sélectionner le 2eme projet.
- Rappel des noms des projets ouverts dans la fenêtre du haut.
- L'ensemble des courbes du ou des projets est affiché avec la possibilité de sélectionner les courbes dans la boite de sélection.

El SmartFlow									
Fichiers	Sauver	Ouvrir	Ouvrir 2 Im	primer	Comp_20	Drifice.grk	 Ref 10rifice30 S:173 M:28.8 20rifice41.4 S:322 M:53.7 		
						-+ Orifice41.4			
50.0-									
40.0									
30.0									
20.0									
10.0									
0.0	1.0	2.0	3.0	4.0	5.0	6.0			

Figure 17 Lecture d'un projet à 2 courbes. Sélection des 2.

- Dans l'onglet « Table »
- Rappel des noms des projets ouverts précédemment dans la fenêtre du haut.
- L'ensemble des tables du ou des projets est affichable avec la possibilité de sélectionner un groupe de tables parmi l'ensemble dans la boite de sélection.

🗈 SmartFlow													
Tableau de bord Projet-Graphe Table Configuration													
Fichiers				Impri	<pre><prv v6-7.grk="" v6-8new.grk;prv=""></prv></pre>							Ref	
L (mm)	1.50	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00		1 PRV Cy2 S:812 M:70.6 1 PRV Cy2 S:807 M:70.2
V (m/s)	89.23	85.86	74.85	67.88	65.82	64.55	62.13	59.70	57.60	54.37	51.24	-	
Ма	0.26	0.25	0.22	0.20	0.19	0.19	0.18	0.18	0.17	0.16	0.15		
dP test (hPa)	92.06	71.09	48.90	35.32	25.43	19.38	15.43	13.16	11.32	10.28	9.55	_	
T mes (°C)	19.67	25.73	31.14	33.41	35.77	16.08	38.37	39.59	40.21	40.20	40.19	+	
Q mes (CFM)	52.05	58.70	63.68	65.45	67.32	69.17	69.31	70.30	70.76	70.72	70.69	- -	
•)	·	
P Baro		98515.7	Date				17:	38:18 25.0	1.2018				
T cor		16	Clien	t				RGeConc	ept				
P cor		10 "H2O	Test					PRV Cy	2				
Flux		Adm	Com	ment				Texte					
D siège d0		40											
Angle soupape		45											
D soupape int o	d1	41	- I										

Figure 18 Lecture d'une table d'un projet à 2 courbes. Sélection/visualisation de la 1ere.

Impression de projets/table

Pour chaque fonction ci-dessus l'impression est possible sur imprimante ou fichier (.PDF par exemple). Bouton « Imprimer ».

5. Fonction avancée du logiciel de pilotage

Calibration de débitmètre

Une possibilité de calibration du débitmètre existe. En mesurant un débit d'un opercule étalon connu il est donc possible de calibrer la soufflerie. Principalement s'il est utilisé un débitmètre personnalisé.

- Dans l'onglet « Configuration » cliquer sur « Ajustement de débit ».
- La fenêtre du graphe du tableau de bord change pour une glissière d'ajustement
- Modifier la valeur en mesurant le débit obtenu et désiré.
- La valeur sera sauvegardée comme les paramètres de configuration.

Figure 19 Ajustement du débitmètre.

Fichiers CSV

Le fichier des données de type CSV (compatible Excel) reprend le format des tables visualisées par SmartFlow. Ce fichier peut servir à des calculs hors SmartFlow si désiré.

Il ne faut pas modifier le fichier CSV sinon SmartFlow ne pourra plus lire les fichiers associés au test. L'ouvrir avec Excel puis le sauver sous format XLS pour travailler

C1

L'exemple ci-dessous donne le format des données. Une balise Cn précède chaque ensemble de données pour une courbe.

Dans la 1ere ligne on trouve successivement : Pression atmosphérique Patmo, Température de correction Tcor, Pression de correction Pcor, le mode d'écoulement Adm/Ech, le diamètre du siège, l'angle de la soupape, le diamètre intérieur de la portée, le diamètre extérieur de la portée, le diamètre de la tige, le nombre de soupape.

Dans la 2eme ligne on trouve successivement : Date et heure, Nom du client, Nom du test, Texte libre.

Ensuite les points de la courbe relevée avec les noms des paramètres de mesure en entête :

Levée, Débit corrigé, Vitesse à la soupape, nombre de Mach, Pression de test, Pression différentielle, Température, Débit mesuré, Débit idéal théorique de la soupape, Levée, Rapport Levée/Diamètre soupape.

97976.2 16		Adm	40	45	41	45	8	1
14:33:24								
RGeConcept	30	Texte						
			dP test	dPflow	T mes	Q mes	Q th	
Q cor (CFM)	V (m/s)	Ma	(hPa)	(hPa)	(°C)	(CFM)	(CFM)	L/D
) 62.9	inf	inf	31.67	39.13	14.64	70.59	0	0
62.79	310.22	0.91	31.63	38.97	14.69	70.44	13.34	0.02
62.31	153.94	0.45	31.88	38.67	14.77	70.2	26.68	0.04
62.05	102.2	0.3	31.97	38.44 38.16	14.73 14.78	69.99 69.74	40.02 53.36	0.07 0.09
62	76.58	0.23	31.79					
62.04	61.3	0.18	32.14	38.64	14.78	70.17	66.71	0.11
61.75	50.85	0.15	32.4	38.56	14.78	70.12	80.06	0.13
	10							
5 16	"H2O	Adm	40	45	41	45	8	1
	Etalon							
RGeConcept	41	Texte						
			dP test	dPflow	T mes	Q mes	Q th	
Q cor (CFM)	V (m/s)	Ma	(hPa)	(hPa)	(°C)	(CFM)	(CFM)	L/D
) 117.24	inf	inf	9.92	43.73	14.97	73.71	0	0
117.36	579.84	1.7	9.88	43.64	14.93	73.63	13.19	0.02
117.83	291.09	0.86	9.85	43.84	14.88	73.79	26.38	0.04
116.73	192.24	0.56	9.96	43.53	14.93	73.54	39.58	0.07
116.63	144.06	0.42	10	43.61	14.94	73.61	52.78	0.09
5 118.04	116.64	0.34	9.76	43.61	14.9	73.6	65.96	0.11
5 116.56	95.98	0.28	9.95	43.35	14.92	73.39	79.16	0.13
	 2 16 RGeConcept Q cor (CFM) 0 62.9 62.79 2 62.31 3 62.05 4 62 5 62.04 61.75 6 6 6 7 6 16 7 17.24 117.36 2 117.83 3 116.73 4 116.63 5 118.04 5 116.56 	2 10 RGeConcept 30 Q cor (CFM) V (m/s) 0 62.9 16 153.94 2 62.31 153.94 62.05 3 102.2 4 62 5 62.04 61.75 50.85 62 76.58 62.04 61.3 61.75 50.85 7 10 7 10 8 62.04 61.75 50.85 7 50.85 7 117.24 8 117.36 7 117.24 117.83 291.09 3 116.73 116.63 144.06 118.04 116.64	2 10 "H2O Adm RGeConcept 30 Texte Q cor (CFM) V (m/s) Ma 62.79 310.22 0.91 62.79 310.22 0.91 62.79 310.22 0.91 62.79 310.22 0.91 62.79 102.2 0.3 62.05 102.2 0.3 62.04 61.3 0.18 61.75 50.85 0.15 7 16 "H2O 8 61.75 50.85 0.15 9 16 "H2O Adm 8 61.75 50.85 0.15 9 16 "H2O Adm 8 61.75 50.85 0.15 9 16 "H2O Adm 8 117 41 Texte 9 117.24 inf inf 117.83 291.09 0.86 116.63 144.06 0.42 118.04 116.64 0.34 116.56		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 16 10 "H2O Etalon Adm 40 45 41 RGeConcept 30 Texte dP test dPflow (hPa) Tmes (°C) 0 cor (CFM) V (m/s) Ma (hPa) (°C) 0 62.9 inf inf 31.67 39.13 14.64 62.79 310.22 0.91 31.63 38.97 14.69 2 62.31 153.94 0.45 31.88 38.67 14.77 3 62.05 102.2 0.3 31.97 38.44 14.78 62.04 61.3 0.18 32.14 38.64 14.78 62.04 61.3 0.18 32.14 38.64 14.78 61.75 50.85 0.15 32.4 38.56 14.78 62.04 61.3 0.18 32.14 38.64 14.78 62.05 102.2 Adm 40 45 41 62.04 61.3 0.18 32.14 38.64 14.78 61.75 50.85 0.15 32.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 10 <td< td=""></td<>

6. Recommandations pour éviter les erreurs

La préparation de pièces nécessite beaucoup d'effort. Les tests effectués sont précieux, pour éviter les erreurs qui peuvent se glisser dans les procédures de test vérifier les points suivants :

- Eviter les fuites en utilisant un bon joint d'étanchéité sur chaque surface (table/adaptateur de cylindre et adaptateur de cylindre/culasse).
- Eviter les fuites au niveau des soupapes restant fermées.
- Monter la bougie.
- Si des ressorts de soupape souples sont utilisés vérifier que la soupape ne soit pas aspirée et ouverte par l'aspiration lors des tests d'admission (fréquent à faible levée).
- Utiliser le même « guide de flux » arrondi coté admission (anneau de pâte à modeler arrondi).
- Utiliser le même adaptateur de cylindre.

L'électronique et le logiciel font un **zéro automatique** des capteurs de pression. La température de test est lue par des capteurs donc la **compensation** de température est assurée. Néanmoins une attente de stabilisation de l'ordre de la minute à la mise sous tension du FCU est bienvenue. Cela sera masqué par le temps de mise en œuvre du test pour peu que le FCU soit relié au PC en premier.